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Time evolution of the reaction front in a subdiffusive system
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Using the quasistatic approximation, we show that in a subdiffusion-reaction system with arbitrary nonzero
values of subdiffusion coefficients, the reaction front xf(t) evolves in time as xf(t)=Kt“/2, with « being the
subdiffusion parameter and K being controlled by the subdiffusion coefficients. To check the correctness of our
analysis, we compare approximate analytical solutions of the subdiffusion-reaction equations with the numeri-

cal ones.
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I. INTRODUCTION

The diffusion-reaction system of two initially separated
substances A and B reacting according to the formula \4A
+\gB— P(inert), where the stoichiometric coefficients A4
and A\ are positive integers, has been intensively studied
during recent years [1-13]. As the diffusion-reaction equa-
tions describing the system are nonlinear, it is difficult to
solve them and their general solutions remain unknown (ex-
cept for very special cases). Thus, to simplify the calcula-
tions one usually uses various approximations, such as the
quasistatic approximation [1-3], the scaling method [1,4-7],
or the perturbation one [9,10]. Applying these methods, there
were derived characteristic functions of the system that in-
clude the time evolution of the reaction front, x/), the width
of the reaction region, Wy(¢), and the width of the depletion
zone, WDep(t) [1,2,4-6], which all appear to be power func-
tions of time f(r)=Kt?. The results were partially confirmed
by numerical calculations and simulations [3,5,6]. However,
as the methods of extracting the power functions are not
based on analytical solutions of subdiffusion-reaction equa-
tions (not even on their approximate forms), the proportion-
ality coefficients K are usually unknown. The coefficients
carry dynamic information about the system, e.g., how the
diffusion coefficient influences the process. As far as we
know, there were only a few attempts to determine K by
means of the quasistatic approximation [2,3].

The situation is even more complicated in the case of
subdiffusive systems, since the equations describing the sys-
tems contain derivatives of fractional order. Subdiffusion oc-
curs in systems where mobility of particles is significantly
hindered due to the internal structure of a medium, as it
happens in porous media or gels [14,15]. The subdiffusion is
characterized by a time dependence of the mean-square dis-
placement of transported particle (Ax?)=2Dt*/T'(1+a),
where D is the subdiffusion coefficient measured in units
m?/s* and « is the subdiffusion parameter, which obeys 0
< a<1. For a=1, one deals with the normal diffusion.
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Since no explicit solutions of the nonlinear (sub)diffusion-
reaction equations are known, one commonly considers a
simplified system, for example the system in which diffusion
coefficients of both reactants are assumed to be equal to each
other [16,17]. However, the diffusion-reaction equations re-
main difficult to solve and approximate methods are still
needed. The scaling method does not allow us to determine
K unless special extra conditions are adopted. The perturba-
tion method is of small efficiency because the first-order re-
sult is often insufficient, while the higher-order corrections
are hard to obtain even in the case of normal diffusion. The
quasistatic method is more promising. In the case of a nor-
mal diffusion-reaction system, it is based on the assumption
that the process proceeds so slowly that changes of concen-
tration of the transported substance are small in some regions
[2,3]. Since the subdiffusion process is even slower than the
normal diffusion, we expect that the quasistatic approxima-
tion is well suited to the subdiffusive systems. Therefore, we
adopt the method in this study. The scaling method and the
quasistatic approximation are often treated as equivalent to
each other. We note, however, that the equivalence holds
only in the long-time limit [17]. At shorter times, the appli-
cability of the quasistatic method does not imply the appli-
cability of the scaling one and vice versa.

In this paper, we show that the time evolution of the re-
action front is given by the formula x/(r)=K:** for a system
with arbitrary nonzero values of the subdiffusion coeffi-
cients. We also derive an equation obeyed by the coefficient
K. Our analytical results are confirmed by numerical solu-
tions of the subdiffusion-reaction equations.

II. THE SYSTEM

A real system is usually three-dimensional, but we assume
its homogeneity in the plane perpendicular to the x axis.
Therefore, we use only one space variable x in our consider-
ations. Throughout this paper, we assume that the subdiffu-
sion parameter « is the same for both substrates. The physi-
cal meaning of this assumption is that the subdiffusion
parameter is determined solely by the medium while the sub-
diffusion coefficient D depends on the transported substance.
This assumption is supported by the experimental results
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presented in [15], where the same value of the parameter «
was found for glucose and sucrose transported in an agarose-
water gel, whereas the subdiffusion coefficients of the two
substances were found to be different from each other. Ad-
ditionally, we assume that both of the reactants are mobile,
D,,Dp>0. The subdiffusion-reaction equations are

-«

1% d
a_tc"(x’t) =Di——

atl_a@Ci(x’t) _diRa(-xat)7 (1)

where C; denotes the concentration of the diffusing particles
of species i, D; is the subdiffusion coefficient, i=A,B, d4
=m and dg=n, with the parameters m and n occurring in the
reaction term [see Eq. (3)]; in the simplest Kinetic reaction
model, these coefficients are equal to the stoichiometric
ones, m=M\, and n=Ag, but experimentally determined pa-
rameters m and n are sometimes noninteger and different
from the stoichiometric coefficients. The Riemann-Liouville
fractional time derivative present in Eq. (1) is defined for the
case of 0<a<1 as

ey 1 d J G
d* " T(l-a)dt)," (1-n*

We note that the choice of the reaction term is neither obvi-
ous nor unique [16-23]. The reaction term that we use here
was applied earlier to the subdiffusion-reaction system in
[16,17]. Tt is

l-a

R, (x,1) = R(x,1), (2)

ﬁtl_a
where the term R(x,7) obtained within the mean-field ap-
proximation reads

R(x,1) = kC (x,1) Cy(x,1), (3)

where k is the reaction rate.

We assume that the particles of reactants A and B are
initially separated from each other. Thus, the initial condi-
tions are

C ( O) COA’ x < 0 (4)
A= 0, x>0,

Cy(x.0) 0, x<O0 5)
B - COB’ x> 0

It was observed [1-6] that when the process starts, charac-
teristic regions appear in the system (see Fig. 1): the deple-
tion zone “Dep,” which is defined as a region where the
concentrations are significantly smaller than the initial ones
(C,<Cy, and Cz<Cyp), the reaction region, where the pro-
duction of particles P is significant, and the diffusion region
“Dif,” where the reaction term R(x,) is close to zero and the
particle transport appears to be almost subdiffusive, i.e.,
without chemical reactions.

For the normal diffusion, the widths of the depletion zone
Whpep and the reaction region Wy grow as the power func-
tions of time [1-7], WDep~t9, with 6=1/2, and Wx~1t*,
where << 6. The value of the parameter u depends on the
system under study. In the case in which the reactants A and
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FIG. 1. Schematic view of the system under consideration; xy is
the reaction front, “Dif” is the diffusion region, Wp,, and Wy de-
note the width of the depletion zone and of the reaction region,
respectively, and the point x, is defined in Sec. VI.

B are mobile, there is w=1/6, and for the system with a
mobile reactant A and a static reactant B we have u=(m
—1)/2(m+1), where m is the parameter occurring in the re-
action term R in Eq. (3) [4] (see also [7,11]). As reported in
[8,17], Wg evolves in time according to the power function
with u=a/6 also in the subdiffusive-reaction system with
two mobile reactants.

An important characteristic of the system under consider-
ation is the time evolution of the reaction front xf(t). It is
defined as a point at which the reaction term R(x,?) reaches
its maximum R(x/(¢),t)=max or, as argued in [5], for m=n
=1 it can be defined by the relation C4(x(1),1)=Cp(xA1),1),
or, in a more general situation, by Cu(x[1),0)/m
=Cp(xA1),0)/n [7]. Unfortunately, these definitions are diffi-
cult to apply using the numerically obtained concentrations.
In the following, we define the reaction front as

JxR(x,t)dx

[R(x,t)dx ©

x,(1) =
Although the relations defining the reaction front are not
exactly equivalent to each other, they all give x, lying inside
the reaction region, and in the long-time limit the definitions
lead to the power function of time,

x/t) ~ 17, (7)

with y=1/2 for the normal diffusion case [1-6]. It was
shown in [17] by means of the scaling method that the rela-
tion (7) with y=a/2 holds for the subdiffusive system where
the subdiffusion coefficients of the reactants are equal to
each other. The relation (7) for any values of the subdiffusion
coefficients is derived here.

II1. QUASISTATIC APPROXIMATION

The quasistatic approximation assumes that the concentra-
tion profile is a slowly varying function of time in a given
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region. Thus, the time derivative is small and, consequently,
the right-hand side (r.h.s.) of (sub)diffusion equation (1) is
also small in the region. It requires

e &
W@CA’B(L[) =~ dA,BRa(x,t). (8)

Since the reaction term is relatively large in the reaction
zone, the quasistatic approximation holds in this zone under
the condition

s J
Dﬂtl_a (7x2 CA,B(x,t) > atCA,B(x,t) . (9)
We note that the condition (9) is fulfilled when the concen-
tration profiles are given in the scaling form [17].

In the diffusive region where R,(x,7)=0, the quasistatic
approximation is applicable when the concentration is a lin-
ear function of x, as the r.h.s. of Eq. (1) then vanishes. The
regions outside the reaction zone, where the concentration
linearly varies with x, determine the borders of the quasi-
static region. The solution of the subdiffusion equation with-
out chemical reactions works here.

In the studies of the normal diffusion with reactions, one
introduces the quasistatic approximation referring to the so-
called equilibration time 7 [2,7,11]. We define 7 as the
average time needed for the substance to spread over the
length Wy in the absence of reactions when the substance
flows from the outside. For the normal diffusion-reaction
system, this parameter was estimated using the relation
(Ax?)~1. Taking (Ax?)~ W3 and 1~ 75, one gets 7~ Wa.
For the subdiffusive system, the relation (Ax?) ~ t* provides

"~ WES, (10)

As for the normal diffusion case, we also introduce a char-
acteristic time 7y of a noticeable change of the flux J in time
dt defined through the relation dJ/J=dt/ 7;, which gives

1 d(logJ)
Ty - dt ’

(11)

The explicit expression of the subdiffusive flux is given later
on by Eq. (33). The balance between the subdiffusion term
and the reaction one is achieved when the equilibration time
7¢ of the reaction region is negligibly small when compared
to the time 7 of the sizeable change of the flux, 7,<7;. It
was argued in [2,7,11] that this condition holds in the long-
time limit for the normal diffusion case and the quasistatic
approximation is applicable when the condition

11—
T o (12)
7y

is satisfied. The quasistatic region is usually defined as a
region where at least one of the conditions (8) and (9), or
(12) is fulfilled. As far as we know, the equivalence of these
definitions has not been proven yet. In our considerations, we
use the relation (8) as the definition of the quasistatic ap-
proximation, and we further show that Eq. (8) implies the
condition (12).
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FIG. 2. The symmetrical system with static reaction front x(z)
=0. The solid lines denote the concentrations C for the system
under considerations, the dashed ones for the system with a fully
absorbing wall located at x=0.

IV. TIME EVOLUTION OF Wy AND Wy,

We expect that, as in the case of the normal-diffusion
reaction systems [5], the results obtained for D,=Djy and
Cos=Cyp hold, at least qualitatively, for arbitrary values of
the subdiffusion coefficients and initial concentrations.
Sometimes the ratios D,/Dp and Cy,/Cyp are even called
“irrelevant parameters” [5]. In this section, we derive the
time evolution of the widths of the reaction region Wy and of
the depletion zone Wp,, assuming that Dy,=Dz=D and
Coa=Cop=Co.

At first, we argue that the assumption u < 6 is correct not
only for the diffusive but for the subdiffusive systems as
well. In [17] it was found by means of the scaling method
that 0=a/2 and u=a/6. We confirm the above relations,
using the method applied earlier to the normal diffusion-
reaction system [13].

Since we assume that Cy,=Cyp and D,=Djp, the reaction
front will not change its position, x/#)=0, due to the sym-
metry arguments. Similarly as for the system with the normal
diffusion [13], to further simplify the calculations, we as-
sume that the concentrations of A and B particles can be
expressed as

CA(X,I) = CAabS('x’t) + 6CA(.X,t),

CB(X,I) = CBabS(.x,t) + 5C3(x,t),

where Cy,ps and Cp,,, are the solutions of the pure subdiffu-
sive equation in the system with a fully absorbing wall lo-
cated at x=0 [the concentration profiles vanish at the wall
Craps(0,1)=Cpu,(0,1)=0], and 5C4 and SCy are correction
terms (see Fig. 2). The symmetry of the system ensures that
Cy(x,1)=Cg(=x,t), which provides 6C,(x,t)=5Cg(~x,1).
Having explicit solutions of the subdiffusion equation for a
system with a fully absorbing wall calculated from Egs. (4),
(5), (25), (28), and (A1), we obtain

1 1

0 2«

2 0 —x 2/a
C )=Coy\1—-—H
‘Aabs(X, 1) 0 o <VW)
(13)

for x<<0 and
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Coe (i) = Cod 1 — 2110 (Lyal !
Babsx’ - 0 @ 11 \“rﬁ 0 z/a

for x>0, where H denotes the Fox function, which can be
expressed as [24]

— 1y

H%?(u‘ 11 ) - lup/qz #

p ql q 52J'T(-plg-jlq)

Substituting C(x,1)=Ci(x,1), OC(x,t)=6C,(x,1), and

Cops(x,1) = Cipps(x,1), where i=A for x<0 and i=B for x

>0, into the subdiffusion-reaction equation and taking into

account that C,,, obeys the subdiffusion equation without
chemical reactions, we get

(14)

W (15)

l-a

&
Q{ng‘(f(x,t)

7 st =
g o T e

— k[ Caps(x,1) + 8C(x,1)]6C(x,1) |.

The borders of the reaction region occur for x where oC is
close to zero. In this region, one can neglect the term (5C)?
in the above equation. Moreover, in the long-time limit we
can approximate the Fox functions present in Egs. (13) and
(14) by the first term of the series (15). Then, we get the
expression Cy (x,1)=kl|x|/t%?, where k=Cok/T'(1-a/2)\D.
So, we find

l-a K|)C|

J &
55C(x,t)= Dﬁ&C(x,t)—mcsC(x,t) . (16)

atl—a‘

As in the case of a normal diffusion-reaction system, [13],
we assume that

z5C()c,t)=0. (17)
ot

Then, from Egs. (16) and (17), and the relation [25]
dPr I'v+1)

=— P >-1, 18
d* “T(v+1-p) g (13)
we obtain
& K] A(x)
DQ(sC(x,t)—[aT(SC(x,t):t_a, (19)

where A(x) is an arbitrary function of x only. In the long-time
limit, the r.h.s. of Eq. (19) can be neglected.
Solving Eq. (19) with the right side equal to zero, we find

oC(x,1) =f(t)Ai<>\t|jf—,|6> , (20)

where Ai denotes the Airy function, which can be approxi-
mated by the following expression:

1 2M3/2:|
Ai(u) = - 21
i(u) S al exp[ 3 (21)

if u>1. To obtain the function f(f), we assume that it is a
power function of time f(r)~*. Putting the function f into
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Eq. (16) and using Eq. (17), we obtain A=—%. Comparing
Eq. (16) with Egs. (1) and (2), we get

relx|

R(x,1) = a2 6C(x,1). (22)

Substituting Egs. (20) and (21) into Eq. (22), we obtain

~ |x| 3/4 2 )\|x| 3/2
R(x,t) ~ ¢ 2a/3(taﬁ exp| — 5 t“W . (23)

As the width of the reaction region is defined by the relation

[7]
Jx - xf(t)]zR(x,t)dx
JR(x,t)dx

we get Wi~ substituting Eq. (23) into Eq. (24) with x;
=0.

Because the width of the depletion zone is defined by the
conditions C;<Cy,, i=A,B, from Egs. (13) and (14) we get
Whpep~ 12, Thus, the relation < 6 is fulfilled for the sys-
tem where the subdiffusion coefficients of the reactants are
equal to each other. We assume that this relation holds for the
system with any nonzero values of the subdiffusion coeffi-
cients.

Wr(x,1) = : (24)

V. CONCENTRATION PROFILE IN THE DIFFUSION
REGION

Since W < Wpy,, the reaction region plays the role of a
partially absorbing wall with respect to the depletion zone.
We find the concentration profiles in the region outside the
reaction zone as the solution of the subdiffusion equation
[Eq. (1) with R (x,7)=0] in the system with a partially ab-
sorbing wall. To calculate the concentration profiles, we use
the integral formula

C(x,t)=fG(x,t;xo)C(xO,O)de, (25)

where G(x,1;x,) denotes the Green’s function for the subdif-
fusion equation. For the system with a partially absorbing
wall located at x=0, the Green’s functions are as follows (see
Appendix A):

G pir(x.1:x0) = Goa(x,1:x0) = paGoalx,1;—xp)  (26)
and
Gp pit(x,1:x0) = Gop(x,1;x0) — ppGop(x,1:=xp),  (27)

where the Green’s function G, for the homogeneous system

(without the wall) reads
10 [x = x| el 1
Hy — ’
\/’Dit 1 Z/a

(28)
i=A,B. The parameters p, and py play here only an auxiliary
role and do not occur in our final formulas. The physical
meaning of p, and pp is discussed in Appendix A. Using the

Go,-(x,t;xo) =

a|x—x0|
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integral formula (25) and initial conditions (4) and (5), we
find (for details, see Appendix B)

Ca )= Co = 1 H}?{ (’_—Lym - 1
“ Dyt 0 2a
(29)
where
My = Cuo(l +pa)/2, (30)
and
“ Dyt 0 2/a
(31)
where
75 = Cpo(1 + pp)/2. 32)

Let us note that when Cy,=Cyz=C, and D,=Dy, Egs. (13)
and (14) give py=pp=1.

Since the condition of validity of the quasistatic approxi-
mation, which is used in our further consideration, involves
the fluxes, we derive here some formulas to be used in the
next sections. The subdiffusive fluxes are given by the for-
mula

= 9C(x, z)
Ji(x,t)==D 33
{(x,1) [PREr— (33)
Using Egs. (29) and (31), we obtain
2/a)-1
2 — \D
J4 pirlx,1) = \'DA77A< _;)
» HIO —x 2/ 1 1
"I \\Vpyo) |-1+20@ 2/a]
(34)
/ 2/a)-1
2 — \D
Jg pi(x,1) =~ _\’DB7/B< )
a X
10 X 2 1 1
XHy| | :
\VDgt -1+2/a 2/«
(35)

In the following, we use the shorter notation for the fluxes
(34) and (35),

\D,7
T pie(x,1) = lﬁ,;‘ ( ) (36)

Dy
I Dif(xat) == / i/QBQ< D [a> (37)

B
where

—_—— 38
Q)= 2,% et 029 (38)
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VI. TIME EVOLUTION OF THE REACTION FRONT

In this section, we derive the time evolution of the reac-
tion front within the quasistatic approximation. The deriva-
tion is based on three assumptions that are expected to hold
in the long-time limit.

(i) We assume that the relations

Wy ~ 1, (39)

Wpep ~ 12, (40)

which are derived in Sec. IV for D,=Djy and Cy,=Cp, hold
for arbitrary values of the subdiffusion coefficients and initial
concentrations.

(ii) The region around the reaction front, where the qua-
sistatic approximation works, is assumed to extend beyond
the reaction zone provided the relation

Wi(t) < [x = x(1)| < Wpey(2) (41)

holds.

(iii) In the diffusion region, the concentrations are given
by Egs. (29)-(32).

We note that the relations (39) and (40) were derived in
[17] by means of the scaling method for the system where
the subdiffusion coefficients of both reactants are equal to
each other. The relation (39) was also found in [8] by means
of the Monte Carlo simulations. We finally note that our
numerical calculations confirm all our assumptions.

Starting with the above assumptions, we show at first the
following:

(a) The concentration profiles (29) and (31) extended to
the reaction region vanish at the points that are identified
with the point x, [shown in Fig. 1 and uniquely defined by
Eq. (47)]. In the long-time limit, the point x. is localized so
close to x; that x, can be replaced by x; in the obtained
formulas.

(b) The fluxes J, and J flowing into the reaction region
from the left and from the right side, respectively, are bal-
anced in such a way that m particles A and n particles B flow
into the reaction region in the time unit.

After showing that the conditions (a) and (b) hold, we use
Eqgs. (29), (31), (36), and (37) to derive a relation describing
the time evolution of the reaction front.

According to Eq. (8), the quasistatic approximation im-

plies
g &>
F{DAECA(X’[)_’”R(X’[)] =0 (42)
and
g &>
F{DB@CB(x,t)—nR(x,t)} =0, (43)
which combined provide
I P
tl O(a 2 (x t) 0
where
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1 1
’\P(x,t) = _DACA(X, t) - _DBCB(X,I). (44)
m n

Using the formula (18), we find that the function V¥ is of the

form
W(x,t) =Ex)*+ F(t)x + G(1), (45)

where E, F, and G are arbitrary functions that are determined

in the following. Applying the operator (’;tll_(, o to Egs. (44)
and (45), we obtain
-« 1 1
(1) = —Jp(t) = —Ja(2). (46)
ot n m

The function ¥ changes its sign in the reaction zone from
positive where Cz=0 to negative where C,=0. Thus, there
is the point x_(7) that lies inside the reaction zone, where the
function ¥ vanishes. Therefore,

W(x,(2),r) =0. (47)
Since xf(t) also lies inside the reaction zone, there is
(1) = x/(1)| < Q' (48)
where () is a positive constant. After simple calculations, we
get

52;§&£B+F®h—aﬁﬂ “49)

W(x,1) =

Let us now consider the region where the region of diffu-

sion approximation overlaps with the one of the quasistatic

approximation for x <x(t). The region occurs for such x that
the condition

= Wpepl,1) < x = x(1) < = Wr(x,1) (50)

is fulfilled. Here CA CAle’ CB"VO ‘]AW‘]Ale’ and JBNO
So, we get from Eq. (44),

W(x,1) = DACA pif(X, 1), (51)
and from Eq. (46),
l-a
;91 P =- JA pir(?). (52)

Let us note that W is given by the function of the variable
x/t*? only [see Eq. (29)]. Therefore, we deduce that

E(x) = ax?, (53)
F= 25, (54

and
G(t)=c, (55)

where a, b, ¢ are constants.
We denote

xt) —x=€(t). (56)
From Eqgs. (39)-(41) and (56), we get

PHYSICAL REVIEW E 78, 066103 (2008)

0,170 < €(r) < Q1

where ), and (), are positive constants. When 7— oo, the
inequality provides t¥°/€(f) —0 and

e(t)/tY? — 0. (57)
Combining Egs. (29), (49), (51), and (53)—(56), we obtain
2 et)—x (O \7*[1 1
Dy Cos— —mH0| | ——=L—
A{ 0A a’]A 11[( VD, 0 2/a
e(t) —x.(1)

_ eg] AUNEY) e (59)

Since in the long-time limit [xAt)—x (1) - €(1)]/1**—0 [see
Eqgs. (48) and (57)], from Eq. (58) we get

2 —x (l) 2/a 1 1
Cou— —muH'O| | =2 =0. (59
0A a77A “|:<\”DAt“ 0 2a (59)

Similar considerations performed in the region
WR(-X?[) <x _xf(t) < WDep(x7t)

provide
1
‘I’(x,t) =—- :ZDBCB Dif(x,t)

and

l-a

1
atl—aF(t) = ;JB pir(?), (60)

which gives

Cope 2| (L) T 61)
0B a773 11 "DBt 0 2a .
From Egs. (52) and (60), we obtain
1 1
—Ja pit=— "/ pifs (62)
m n

and from Egs. (36), (37), and (62), we get

L EmQ(LXQ)—%VD nBQ( A ) (63)

D, VDyt?
Combining Egs. (59), (61), and (63), and using the identity
[28]
1 1 a 1 a2
HIO( 2/a ) — _H10< >, 64
o 2a) "2 %o 1 (64)
we have

E\HD—ACOA(D( x(t) )’ (65)

—
m VDBCOB \'/DBta

@(—xﬁﬂ)z
\'/DAla
where ®(z)=H |z 1Oa/z)/Q(z) The unique solution of Eq.
(65) is

x,(t) = Kt*?, (66)

where coefficient K is the solution of the following equation:
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—
-K /D ,C, K

@(F)zﬁ\,—f‘ OA(D(,——). (67)
VDy/  mANDgCop \\Dpg

Thus, the time evolution of the reaction front is the power
function with the exponent depending on the subdiffusion
parameter « only; the subdiffusion coefficients D, and Dy
control the parameter K. Equations (66) and (67) are the
main results of our paper.

The procedure developed in this paper is the extension of
the one used previously for the normal diffusion [2]. Repeat-
ing our consideration for @=1, we obtain the results identical
with those from [2]. Our formula (66) with K given by Eq.
(67) is a generalization of Eq. (21) from Ref. [17].

VII. NUMERICAL SOLUTIONS

To verify the correctness of our procedure, we compare
the analytical functions, which are derived in the previous
sections, with numerical solutions of Eq. (1). The quasistatic
approximation zone exists where the function WV is parabolic
with respect to x, as required by Egs. (45) and (53)—(55). We
also show that there exists the region of overlap of the dif-
fusion zone and the quasistatic one; in this region, Cyp;; or
Cppir are the linear functions of x.

A. Numerical procedure

The functions C, and Cp and their second derivatives
with respect to x are assumed to be bounded. As we show in
Appendix C, Eq. (1) is equivalent to
)= D) — dR() (68)
PP O S

where i=A,B, dy=m, dg=n, and on the lLh.s. there is the
Caputo fractional time derivative, which is defined for 0
<a<1 as[29]

")

) 1 >
e T-w), a7

Throughout this paper, we denote the Riemann-Liouville
fractional derivative without any additional index as
d®f(t)/dr®; the other kinds of the fractional derivatives are
labeled by index C for the Caputo fractional derivative and
GL for the Griinwald-Letnikov one.

In the papers [30,31], procedures were presented to solve
numerically the subdiffusion equation without chemical re-
actions, when one can use the equation with Riemann-
Liouville as well as Caputo fractional time derivative. The
situation is different in the case of the subdiffusion-reaction
equations. Since the operator of the Riemann-Liouville frac-
tional derivative acts in Eq. (1) on the term representing
chemical reactions, Eq. (68) is simpler for numerical treat-
ment, as the operator of fractional derivative acts here only
on the concentration on the Lh.s. of the equation.

To numerically solve the normal diffusion equation, one
usually substitutes the time derivative by the backward dif-
ference %ﬂ *—V&g_ﬁl. In the presented procedure, we pro-
ceed in a similar way. We use the Griinwald-Letnikov frac-
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tional derivative, which is defined as the limit of the
fractional-order backward difference [29]

GL ja [1/At]
d“f(t
O _ i 203 (- 1)’<a)f(t— rAD, (69)
dt Ar—0 =0 r
where @>0, [z] means the integer part of z, and
(a)_ Fa+1)  ala-1)X ... X[a=(r-1)]
r) rT(a-r+1) 1 X2X3X ... Xr ’

When the function f(z) of a positive argument has con-
tinuous derivatives of the first order, the Riemann-Liouville
fractional derivative is equivalent to the Griinwald-Letnikov
one for any parameter o (0<a<1) [29]. So, we have

a GL ja
def(e) _ “d°f. 10)
dr® dr®

The relation between Riemann-Liouville and Caputo deriva-
tives is more complicated and reads

d°f() _ “d°f(r)

d,_(1)f(0), 71
e et 1—a()(0) (71)
where
lq
, >0
<I>q+1(t)= I'(g+1) (72)
0, r<0.

From Egs. (69)—(72), we can express the Caputo fractional
derivative in terms of the fractional-order backward differ-
ence,

[t/Ar]

C
d j;(t) = lim A (- 1)*(“) At rAr)
dt Ar—0 r=0 r
- mf (0). (73)

The standard way to approximate the fractional deriva-
tive, which is useful for numerical calculations, is to keep Az
in Eq. (73) finite and to replace the infinite series by the finite
one,

Cad°f(r)
dr®

mf(o),

L
~ (AN, (- 1)’(a>f(t— rAr) -
r=0 r

(74)

where the “memory length” L is a natural number of arbi-
trary value (L<[t/Ar]).

Subdiffusion is a process with memory as the operators of
fractional derivatives are not local in time. According to the
short memory principle, the fractional derivative is approxi-
mated by the fractional derivative with moving lower limit
t—L, where L is the “memory length” equal to a certain
number of time steps [29]. However, we showed [32] that the
numerical solutions of the subdiffusion equation with the ini-
tial conditions (4) and (5) are in agreement with the analyti-
cal ones only when the memory length is close to the actual
number of time steps. So, the short memory principle does
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not work and in numerical calculations we take the memory
length L equal to the actual number of time steps.

Substituting Eq. (74) into Eq. (68) and using the follow-
ing approximation of the second-order derivative:

d*f(x) _ S+ Ax) = 2f(x) + f(x — Ax)

dx? (Ax)? ’
we obtain
L
,ala=1) X .. X[a=(r-1)]
Ci(x’t)__z(_l) IX2X3X ... Xr
(Ap)“
XC. —rA ———C.
Ci(x,t—rAr) + Tl a)C,(x,O)
A a
+ D,-%[Ci(x + Ax,t — At) = 2C(x,t = Ar)
+ Ci(x— Ax,t— A1)]
= dik(AD)*C} (x,t — At)Cy(x,t — Ar) (75)

for i=A,B, dy=m, and dz=n.
B. Numerical results

Here we compare the analytical results with the numerical
ones. In all figures, there are presented functions calculated
for the system where a=0.5, D,=0.025, Dp=0.0125, Cyy
=2, Cop=1, k=1, and m=n=1. For numerical calculations,
we take Ax=0.2 and Ar=0.05 (all quantities are given in the
arbitrary units). Additionally, in Figs. 5 and 6 we plot the
borders of the reaction zone (x;—Wg/2,x,+Wg/2) calculated
for the time t=5000. The position of the reaction front was
calculated from the discrete version of Eq. (6),

2xR(x;,1)
EiR(-xiv t) ’

and it equals 0.71 for r=5000. The width of the reaction
region calculated from a discrete version of Eq. (24),

3 [x; = x ()R (x;,1)
EI'R(xi’t) '

x(t) = (76)

Wr(r) =

equals 0.38 for r=5000. Thus, the reaction region occupies
the interval (0.52; 0.90).
From Eq. (76), we find that

x,(1) = 0.083819%". (77)

This relation is similar to the relation (66) with K calculated
from Eq. (67), which is

x/(1) = 0.08251"%. (78)

Figures 3 and 4 present the concentration profiles C4 and
Cj obtained numerically according to the formula (75) and
the functions given by Egs. (29)—(32) with p,=0.40 and pg
=3.64, respectively; the parameters p, and pg are treated as
fit parameters that ensure the best matching of the analytical
solutions and numerical ones. We observe a good agreement
of the analytical and numerical functions in the diffusion
region.
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FIG. 3. The symbols represent the numerical solutions C, of the
subdiffusion-reaction equation; the solid lines are assigned to the
analytic solutions Cyp; for the times given in the legend. All quan-
tities are in arbitrary units.

In Fig. 5, we present the function W(x,7) calculated nu-
merically and its parabolic fit W(x,)=0.297(x/t*?)?
—0.168(x/1t%?)+0.015 [the parameters a, b, and ¢ occurring
in Egs. (45) and (53)—(55) are fit parameters]. We note that
W is well approximated by the parabolic function of x. The
region where W is parabolic determines the quasistatic ap-
proximation region. However, we expect that there are de-
viations from this approximation in a region located within
the reaction zone, where the reaction term is significantly
different from zero. This is because the concentrations Cy
and Cjp have different scaling properties in that region. We
expect that the width of that region is so narrow, as compared
with the width of the quasistatic approximation one, that the
deviation from parabolic approximation is hard to observe in
the plots presented in our paper. We conclude that the possi-
bility of those deviations does not influence our main results.

1.0

0.8

0.6 4

c,(x)

0.2

0.0

FIG. 4. The numerical solutions Cg (symbols) and the analytic
solutions Cpp;r (solid lines) for the times given in the legend.
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FIG. 5. The function ¥ (symbols) obtained numerically for the
times given in the legend and their parabolic fits inside the quasi-
static approximation region (solid line); the vertical lines represent
the borders of the reaction zone calculated for =5000.

In Fig. 6, we present the numerical solutions of the
subdiffusion-reaction equations and their linear fit calculated
from the formulas Cj,(x,t)=-0.816x+0.616 and Cg(x,1)
~(0.620x—0.490, respectively. The linear fit of C4 and Cjy is
satisfactory outside the reaction region. This confirms the
correctness of the quasistatic approximation in the region
enclosing the reaction region.

The numerical results give Wy with the exponent
which is very close to the one obtained analytically. As we
mentioned in Sec. III, the quasistatic approximation can be
applied to a region where the equilibrium time 7 of the
reaction region is negligibly small in comparison with the
characteristic time of change of the flux 7j in the long-time
limit [2,7,11]. Let us note that this condition is fulfilled in the
system under consideration. Since Wx~t%°, we have 7

~ t0'08

2.0+

0o
4 DDDDD
o
o

m 1.0+ \ ; pooot
0.6 Bl 4
0.4 N

0.2 1 iy

] u)
0.0 fommapamnegacnoganmegeanngeal 00 ma cannagannoganan
1

FIG. 6. The concentration profiles C4 and Cp obtained numeri-
cally (squares) calculated for time r=5000 and the linear fits
(dashed lines); the vertical lines represent the borders of the reac-
tion zone.
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~ 113 from Eq. (10). Taking the definition (11), which for the
subdiffusion flux J~ 1/t'=%2 gives 7;~ 1/t [see Eqs. (36)
and (37)], we get 7/ 77—,_.,.0 for any value of the subdiffu-
sive parameter «. So, the assumptions adopted in our paper
agree with the quasistatic condition (12).

It can be concluded that our numerical results fully sup-
port the postulates of the quasistatic approximation.

VIII. FINAL REMARKS

Using the quasistatic approximation and utilizing the so-
lution of the subdiffusion-reaction equations in the diffusive
region, we show that the time evolution of the reaction front
for the subdiffusion-reaction system is the power function
(66) with the exponent a/2 and the coefficient K controlled
by the subdiffusion coefficients of the system. The function
x;~ 1% can be obtained by means of the scaling method, but
it is very hard within this method to find an explicit expres-
sion of the parameter K for the case of D, # Dyp.

We consider the process of subdiffusion controlled by
chemical reactions. It means that the reactions proceed rela-
tively fast, when compared with the characteristic time of
meeting of particles A and B [1]. Under such an assumption,
the quasistatic approximation is valid and the time evolution
of the reaction front does not depend on the detailed form of
the reaction term (except the dependence on the parameters
m and n). This happens because the form of R does not
change the relation Wy ~ %, Thus, the width of the reaction
zone appears to be relatively small in comparison with the
width of the quasistatic approximation region. The time evo-
lution of x; is determined by the dynamics of transport of
particles to the reaction zone. This statement is particularly
important for the subdiffusion-reaction systems, where the
reaction term is not uniquely defined (as the fractional de-
rivative can be applied in a few ways [16-22]). Let us note
that x; depends on the parameters a, m, n, Dy, Dg, Cp,, and
Cop, which can be measured experimentally and have a
simple physical interpretation, but it is independent of the
parameters py, pp (and consequently 74, 7p), which play
only an auxiliary role in our considerations.

Equations (66) and (67), which are main results of our
paper, can be used to extract the subdiffusion parameters
from experimental data. However, as far as we know, the
time evolution of the reaction front has not yet been mea-
sured experimentally in a subdiffusive system with two mo-
bile reactants. The only example of the subdiffusion-reaction
process that has been observed is, to the best of our knowl-
edge, the process of progress of the carious lesion in tooth
enamel [33,34]. The reaction front can then be identified
with the border of the caries and its time evolution can be
measured. In that case, the system consists of one reactant
(acid) that is mobile, but the other (hydroxyapatite) is static.
Since the quasistatic approximation cannot be then defined
by Egs. (42) and (43), this case is not considered here. How-
ever, our preliminary results show that in such a system, the
time evolution of the reaction front is also given by the for-
mula (66), but the equation defining the parameter K is dif-
ferent from Eq. (67). A quantitative comparison of the mea-
sured evolution of the reaction front with our theoretical
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predictions is presented, and the parameters « and D, are
extracted in [33,34].
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APPENDIX A

Here we find the Green’s functions for a system with a
partially absorbing wall by means of the generalized method
of images, which was used earlier to find such functions for
a system with a partially reflecting wall [27].

From a microscopic point of view, the Green’s function is
interpreted as a concentration profile of the N particles (di-
vided by N), which are instantaneously produced and start
their random walk from the position x,, at the initial moment
t=0. It is also interpreted as a probability density of finding a
particle in point x at time ¢ under the condition, that the
particle is located in the position x, at the initial moment ¢
=0.

The standard method of images was applied for a diffu-
sive system with a fully absorbing or a fully reflecting wall
[26]. Then, one replaces the wall by a fictitious instantaneous
point source of the particles (IPS) in such a manner that the
concentration profile generated by all IPS behaves as in the
system with the wall. In the case of a fully absorbing wall,
the concentration vanishes at the wall. The Green’s function
is then the difference of IPS placed at x, and —x,, which
gives

G(x,15x0) = Go(x,15x0) = Go(x, 15— xp), (A1)

where G, denotes the Green’s function for the homogeneous
system without any wall; here the wall is located at x=0. The
Green’s function for the system with the partially absorbing
wall can be obtained from Eq. (Al) by reducing the IPS
located at —x, by the parameter p. Then, we find

G(x,1;x0) = Golx,1;x0) — pGolx,1;— xp). (A2)

The parameter p is assumed to be a constant characterizing
the wall and it has the following physical interpretation: if
during a given time interval N particles reach the wall, the
fraction p of them will be absorbed.

APPENDIX B

In this appendix, we present some details of the procedure
of solving the subdiffusion equation. The calculations with
Riemann-Liouville fractional time derivative are relatively
simple in terms of the Laplace transform (LT) i[f(t)] = f(s)
= [ydtf(t)e™". The LT of the Green’s function for a homoge-
neous subdiffusive system without chemical reaction (28)
reads [14,24]
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—|x—x, \““‘sa/D-
0 i

éO,i(x7S;x0) = (B1)

—_—
2 \’rDisl—a/Z

i=A,B. The LT commutes with the integration (with respect
to the variable x). So, from Eq. (25) we get

é‘(x,s) = J é(x,s;xo)C(xo,O)dxo. (B2)

Putting Eq. (B1) into the LT of Egs. (26) and (27), and next
to Eq. (B2), we obtain

) C -
Culx,s)=—2 - T4 ~(-xs*)\D (B3)
s s
with 7, = Cps(1+p,)/2, and
. C o
CB(X,S) = 08 - @e_xs /Z/VDB (B4)

N

with 773 = Co(1+pp)/2. The inverse Laplace transform L,
for a>0 and B>0, gives [24]

A1 B 1 10 a”ﬁ : :
(5% ") = WH” — | 1+v l (B5)
B B

and

r—1 V—asﬁ _ 1 . 1 (_£>j
L7\(s% )_t“V%j!F(—v—jﬁ) 5| (BO)

Using the relation (B5) to calculate the inverse LT of Egs.
(B3) and (B4), we get Egs. (29) and (31). Let us note that
comparing the right-hand sides of Egs. (B5) and (B6), after
simple calculations, we get the useful relation (15).

The LT of the subdiffusive flux (33) reads

déi(x,s)

]' , - _Di 1-a
i(x,s) s i

(B7)

Putting Egs. (B3) and (B4) into Eq. (B7) and next to Eq.
(B5), we obtain Egs. (34) and (35).

APPENDIX C

Here we show that Egs. (1) and (68) are equivalent to
each other when the concentration C and its second space
derivative are bounded. The Laplace transforms of fractional
derivatives are as follows [29] (here 0 < a<1):

A SO | AU
L{?} O g

>

=0

[:[ Cdaf(f)
dr”

] = 5%f(s) = s*”'£(0).

The Laplace transform of Eq. (1) is
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dzé'(x,s) R
T—R(XJ)}
d° d*C(x,t

_d {D (.
ar*« dx

sC(x,s) — C(x,0) = sl_“[D

s

=0
(C1)

—R(x,t)}

whereas the Laplace transform of Eq. (68) reads 52C(x,s)
2 A A
—s“‘IC(x,O):D%ﬁﬂ—R(x,s), which gives

dzé(x,s)

a3 -zé(x,s)]. (C2)

sé(x,s) - C(x,0) = sl_“|:D

We assume that the function C and its second space-variable
derivative are bounded. So, there is a positive number M that

fulfills the relation |®(x,7)|<M, where @(x,t)EDﬁg);—”2

PHYSICAL REVIEW E 78, 066103 (2008)

—R(x,1), for any x and ¢. From the definition of Riemann-
Liouville derivative of negative order

a* _ 1 ' _ ~a-l
0= fo dr(i— (),
we obtain
‘ d__o;(a(x,t) st drt- ' = Mt", (C3)

and from Eq. (C3) we get

—a

O(x,1)|-=0,
dre (6,0 =0
which makes the Laplace transforms (C1) and (C2) equal to
each other. Thus, Egs. (1) and (68) are equivalent to each
other for the bounded function ©.
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